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Exercises marked with () will be used in later exercises or in the homeworks: you might want
to prioritize those.

1. Good and bad global behavior of Newton’s method.

1. Consider the function f(z) = }lx‘l — 2%+ 2z + 1. What is the behavior of Newton’s method

on f if the initial point is 2o = 07 (Observe numerically first.)

2. Argue that f(z) = log (¢” + e¢~*) has a Lipschitz continuous gradient, a Lipschitz continuous
Hessian, and is strictly convex (it helps to plot the function). What is the behavior of
Newton’s method on this function with zo = 17 And with zq = 1.57

3. Consider the Rosenbrock function

f(z,y) = (a —2)* + by — 2%)?

with @ = 1 and b = 100. Run Newton’s method with o = (—1.2,1). Compare the perfor-
mance with the one of gradient descent for this initial point.

Answer.

1. The function f is 1-dimensional (see Figure 1). In this case the iterates are

f'(xx)

Tk+1 = Tk — f”(ﬂlik)'

Therefore we have
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This pattern repeats indefinitely: for all k£ we have

{O if k£ is even
T —

0.

ZE1:0—

1 if k£ is odd.

In this situation Newton’s method exhibits a limit cycle. It is also an attracting limit cycle in
the sense that starting from any point in some neighborhood of 0 and 1 will produce iterates
with this limit cycle. This phenomenon is not specific to this very simple optimization
instance and can also occur in more realistic situations.



Figure 1:  f(z) = j2* —2? + 2z + 1.

2. The function f is 1-dimensional (see Figure 2). We find that for all z € R the first and

Figure 2:  f(z) = log (e* + e 7).

second derivatives are

, er —e™” e "’ " 4
Jlw) = er +e T ! 26:” +e® and - fl(w) = (e + e=®)2
We bound the second derivative as 0 < f”(x) < 1 for all # € R. This shows that f is strictly
convex and has 1-Lipschitz continuous gradients. (Notice that the bound |f’(z)| < 1 gives
that f is also 1-Lipschitz.) For the Lipschitz continuity of f” we can either find some constant
L’ to bound |f"(x) — f"(y)| < L'|z — y|. Or an alternative method consists in bounding the
third derivative

8(e* —e™ ")

P =~y

(see Figure 3). Clearly f” is an odd function, non-negative on R_, and non-positive on



f///(l,)

Figure 3: " (z) = —%.

R, . It is also easy to see that lim, , ., f”(x) = 0 so f” attains its maximum on R_. The
maximum must be a critical point; we find that the derivative of f” is given by

_16e*(1 — 4e** 4 €'7)
B (14 e22)t

f//// (:L,)

for all z. This quantity is zero if and only if 1 — 4e** 4 ¢%* = 0. This equation has a unique
solution in R_ given by

1
= 5 log(2 — V3).

So | f"”| is bounded above by f"(z*) = ﬁg' We conclude that f” is L’-Lipschitz continuous

. /4

With xg = 1 Newton’s method achieves convergence with machine precision in a few itera-
tions. However, despite the favorable properties of f, with xy = 1.5 the iterations diverge.
This is another example of what can go wrong with Newton’s method.

3. Gradient descent with constant step-size needs several dozens of thousands of iterations to
find a point such that the gradient norm is less than 107%. Gradient descent with backtracking
linesearch is also very slow: the number of iterations that we need is within the same order
of magnitude. In contrast Newton’s method converges with machine precision in less than
10 iterations.

2.(x) Regression loss function. We let y € R™ and F: R® — R™ be a C? map. Consider the
C? regression function f: R™ — R defined by

fl) = IF @) — ol



Find the gradient and the Hessian of f as a function of the derivatives of F.

Hint: There are two ways to see this. You can see F' as m scalar functions that have a gradient
and a Hessian and express everything as a function of this. Or you can define the Jacobian of
F as J(x) = DF(x) € R™". Then J is a function R" — R™™ and for all z,u € R™ we have
DJ(z)[u] € R™*™,

Answer. Remember thatifh: & - F, g: F - Gand f =goh: & — G then for all x,u € £ we
have

Df(z)[u] = Dg(h(x))[Dh(x)[u]].

This is known as the chain rule.
Using the chain rule (or the product rule for the inner product) we find that for all x,u € R™
we have

Df(#)[u] = (F(x) =y, DF(x)[u])
= (DF(2)"[F(x) = yl,u),

where DF(x)*: R™ — R" is the adjoint of DF(z): R — R™. We deduce that for all z € R" we
have

Vf(z) = DF(x)*[F(x) — y].
For all x € R™ we let J(z) = DF(z) denote the Jacobian of F' at x so we can rewrite
Vf(z) = J()"[F(z) —y].
Using the product rule we find that for all x,u € R™ we have
Vi f(@)[u] = (DI (2)[u]")[F(x) — y] + I (2)*[J (2)[u]]
To convince yourself you can also work from the definition:

t—0 t

Use the Taylor expansion J(z + tu) = J(z) + tDJ(z)[u] + O(t?) to compute the limit above.

If you are worried about what happens with the adjoint, check that taking the adjoint of a
linear map is a linear operation and think about what happen when we differentiate linear opera-
tions. [ ]

3. Computing Hessians. For the following functions f: &€ — R give an expression for the
gradient and the Hessian. Specifically, for the Hessian compute V2 f(x)[u] for all z,u € .

1. Given a € R", consider f(z) = 3(zz + (a'z)?) for all z € R".

2. (%) Given A € R™" M € R™", consider the function f: R™*" — R defined by

1
FOX) = SIATX = M,

where || - || is the Frobenius norm.



Answer.

1. We have already encountered this type of function, but not in this form. In fact, note that
we may rewrite f as

flz) = %(:cT:c +z'aar)
= %xT(I + aa')z.
From this we deduce that for all z € R"
Vix)=I+aa)r and  Vf(z)= (I +aa). (1)

In particular for all x,u € R™ we have
V2f(z)[u] = u+ aa'u.
2. In exercise 3 of exercise sheet 1 we found that for all X we have
Vi(X)=AATX — AM.

Therefore, it follows that for all X, U € R™*"

VX +tU)—-VFX)

V2f(X)[U] = lim

t—0 t

_ AATX +tU) — AATX
= lim

t—0 t
= AA'U.



