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Exercises marked with (∗) will be used in later exercises or in the homeworks: you might want
to prioritize those.

1. Good and bad global behavior of Newton’s method.

1. Consider the function f(x) = 1
4
x4 − x2 + 2x+ 1. What is the behavior of Newton’s method

on f if the initial point is x0 = 0? (Observe numerically first.)

2. Argue that f(x) = log (ex + e−x) has a Lipschitz continuous gradient, a Lipschitz continuous
Hessian, and is strictly convex (it helps to plot the function). What is the behavior of
Newton’s method on this function with x0 = 1? And with x0 = 1.5?

3. Consider the Rosenbrock function

f(x, y) = (a− x)2 + b(y − x2)2

with a = 1 and b = 100. Run Newton’s method with x0 = (−1.2, 1). Compare the perfor-
mance with the one of gradient descent for this initial point.

Answer.

1. The function f is 1-dimensional (see Figure 1). In this case the iterates are

xk+1 = xk −
f ′(xk)

f ′′(xk)
.

Therefore we have

x1 = 0− 03 − 2 · 0 + 2

3 · 02 − 2
= 1 and x2 = 1− 13 − 2 · 1 + 2

3 · 12 − 2
= 0.

This pattern repeats indefinitely: for all k we have

xk =

{
0 if k is even

1 if k is odd.

In this situation Newton’s method exhibits a limit cycle. It is also an attracting limit cycle in
the sense that starting from any point in some neighborhood of 0 and 1 will produce iterates
with this limit cycle. This phenomenon is not specific to this very simple optimization
instance and can also occur in more realistic situations.
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Figure 1: f(x) = 1
4
x4 − x2 + 2x+ 1.

2. The function f is 1-dimensional (see Figure 2). We find that for all x ∈ R the first and
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Figure 2: f(x) = log (ex + e−x).

second derivatives are

f ′(x) =
ex − e−x

ex + e−x
= 1− 2

e−x

ex + e−x
and f ′′(x) =

4

(ex + e−x)2
.

We bound the second derivative as 0 < f ′′(x) ≤ 1 for all x ∈ R. This shows that f is strictly
convex and has 1-Lipschitz continuous gradients. (Notice that the bound |f ′(x)| < 1 gives
that f is also 1-Lipschitz.) For the Lipschitz continuity of f ′′ we can either find some constant
L′ to bound |f ′′(x)− f ′′(y)| ≤ L′|x− y|. Or an alternative method consists in bounding the
third derivative

f ′′′(x) = −8(ex − e−x)

(ex + e−x)3

(see Figure 3). Clearly f ′′′ is an odd function, non-negative on R−, and non-positive on
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Figure 3: f ′′′(x) = −8(ex−e−x)
(ex+e−x)3

.

R+. It is also easy to see that limx→−∞ f ′′′(x) = 0 so f ′′′ attains its maximum on R−. The
maximum must be a critical point; we find that the derivative of f ′′′ is given by

f ′′′′(x) =
16e2x(1− 4e2x + e4x)

(1 + e2x)4

for all x. This quantity is zero if and only if 1− 4e2x + e4x = 0. This equation has a unique
solution in R− given by

x⋆ =
1

2
log(2−

√
3).

So |f ′′′| is bounded above by f ′′′(x⋆) = 4
3
√
3
. We conclude that f ′′ is L′-Lipschitz continuous

with L′ = 4
3
√
3
.

With x0 = 1 Newton’s method achieves convergence with machine precision in a few itera-
tions. However, despite the favorable properties of f , with x0 = 1.5 the iterations diverge.
This is another example of what can go wrong with Newton’s method.

3. Gradient descent with constant step-size needs several dozens of thousands of iterations to
find a point such that the gradient norm is less than 10−6. Gradient descent with backtracking
linesearch is also very slow: the number of iterations that we need is within the same order
of magnitude. In contrast Newton’s method converges with machine precision in less than
10 iterations.

■

2.(∗) Regression loss function. We let y ∈ Rm and F : Rn → Rm be a C2 map. Consider the
C2 regression function f : Rn → R defined by

f(x) =
1

2
∥F (x)− y∥2.
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Find the gradient and the Hessian of f as a function of the derivatives of F .
Hint: There are two ways to see this. You can see F as m scalar functions that have a gradient
and a Hessian and express everything as a function of this. Or you can define the Jacobian of
F as J(x) = DF (x) ∈ Rm×n. Then J is a function Rn → Rm×n and for all x, u ∈ Rn we have
DJ(x)[u] ∈ Rm×n.

Answer. Remember that if h : E → F , g : F → G and f = g ◦ h : E → G then for all x, u ∈ E we
have

Df(x)[u] = Dg(h(x))[Dh(x)[u]].

This is known as the chain rule.
Using the chain rule (or the product rule for the inner product) we find that for all x, u ∈ Rn

we have

Df(x)[u] = ⟨F (x)− y,DF (x)[u]⟩
= ⟨DF (x)∗[F (x)− y], u⟩ ,

where DF (x)∗ : Rm → Rn is the adjoint of DF (x) : Rn → Rm. We deduce that for all x ∈ Rn we
have

∇f(x) = DF (x)∗[F (x)− y].

For all x ∈ Rn we let J(x) = DF (x) denote the Jacobian of F at x so we can rewrite

∇f(x) = J(x)∗[F (x)− y].

Using the product rule we find that for all x, u ∈ Rn we have

∇2f(x)[u] = (DJ(x)[u]∗)[F (x)− y] + J(x)∗[J(x)[u]]

To convince yourself you can also work from the definition:

∇2f(x)[u] = lim
t→0

∇f(x+ tu)−∇f(x)

t
.

Use the Taylor expansion J(x+ tu) = J(x) + tDJ(x)[u] +O(t2) to compute the limit above.
If you are worried about what happens with the adjoint, check that taking the adjoint of a

linear map is a linear operation and think about what happen when we differentiate linear opera-
tions. ■

3. Computing Hessians. For the following functions f : E → R give an expression for the
gradient and the Hessian. Specifically, for the Hessian compute ∇2f(x)[u] for all x, u ∈ E .

1. Given a ∈ Rn, consider f(x) = 1
2
(x⊤x+ (a⊤x)2) for all x ∈ Rn.

2. (∗) Given A ∈ Rm×n, M ∈ Rn×n, consider the function f : Rm×n → R defined by

f(X) =
1

2
∥A⊤X −M∥2F,

where ∥ · ∥F is the Frobenius norm.
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Answer.

1. We have already encountered this type of function, but not in this form. In fact, note that
we may rewrite f as

f(x) =
1

2
(x⊤x+ x⊤aa⊤x)

=
1

2
x⊤(I + aa⊤)x.

From this we deduce that for all x ∈ Rn

∇f(x) = (I + aa⊤)x and ∇2f(x) = (I + aa⊤). (1)

In particular for all x, u ∈ Rn we have

∇2f(x) [u] = u+ aa⊤u.

2. In exercise 3 of exercise sheet 1 we found that for all X we have

∇f(X) = AA⊤X − AM.

Therefore, it follows that for all X,U ∈ Rm×n

∇2f(X)[U ] = lim
t→0

∇f(X + tU)−∇f(X)

t

= lim
t→0

AA⊤(X + tU)− AA⊤X

t
= AA⊤U.

■
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